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Abstract 

GENOMIC CHARACTERIZATION OF SARCOMATOID TRANSFORMATION IN 

CLEAR CELL RENAL CELL CARCINOMA.  Mark Bia, Siming Zhaoa, Jonathan 

W. Saide, Maria J. Merinog, Adebowale J. Adenirand, Zuoquan Xieb, Cayce B. 

Nawafb, Jaehyuk Choih, Arie S. Belldegrunf, Allan J. Pantuckf, Harriet M. Klugerc, 

Kaya Bilguvar a, Richard P. Liftona, Brian Shuchb.  aDepartment of Genetics and 

Howard Hughes Medical Institute, bDepartment of Urology, cDivision of Oncology, 

Department of Medicine, dDepartment of Pathology, hDepartment of 

Dermatology, Yale School of Medicine, New Haven, CT.  eDepartment of 

Pathology, fDepartment of Urology, UCLA School of Medicine, Los Angeles, CA.  

gTranslational Surgical Pathology Division, National Cancer Institute, Bethesda, 

MD 

 

The presence of sarcomatoid features in renal cell carcinoma (ccRCC) confers a 

poor prognosis. The mechanisms that account for these sarcomatoid features are 

unknown. We performed whole exome sequencing of matched normal-

carcinomatous-sarcomatoid specimens from 21 subjects.  Two tumors had 

hypermutation and a mutational signature consistent with mismatch repair 

deficiency.  In the remaining 19 tumors, sarcomatoid and carcinomatous elements 

shared a mean of 45/108 (41.7%) somatic single nucleotide variants (SSNVs). 

Sarcomatoid elements had a higher overall SSNV burden (mean 90 vs 63 SSNVs, 

p=4.0x10-4), increased frequency of non-synonymous SSNVs in Pan-Cancer 

genes (mean 1.4 vs 0.26, p=0.002), and increased frequency of loss of 
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heterozygosity across the genome (median 913 vs 460 Mb in LOH, p < 0.05), with 

significant recurrent segments of LOH on chromosomes 1p, 9, 10, 14, 17p, 18, 

and 22.   The most frequent somatic mutations shared by carcinomatous and 

sarcomatoid elements were in known ccRCC genes (VHL, PBRM1, SETD2, 

PTEN).  Most interestingly, sarcomatoid elements acquired new bi-allelic TP53 

mutations in 32% of tumors (p=5.47x10-17); TP53 mutations were absent in 

carcinomatous elements in non-hypermutated tumors and rare in previously 

studied ccRCCs. Mutations in known cancer drivers ARID1A and BAP1 were 

significantly mutated in sarcomatoid elements, and were mutually exclusive with 

TP53 and each other. Additionally, LOH on chromosome 9 was found in all TP53-

mutant tumors. These findings demonstrate that sarcomatoid elements arise from 

dedifferentiation of carcinomatous ccRCCs and implicate specific genes in this 

process. These findings have implications for the treatment of patients with these 

poor-prognosis cancers.  
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Introduction 

 Sarcomatoid transformation is common in various epithelial malignancies, 

featuring further loss of differentiation and acquisition of characteristics typical of 

a sarcoma. In renal cell carcinoma (RCC), sarcomatoid features are observed in 

5% of tumors.  However, among individuals with stage IV disease, it occurs in 

15%.(1, 2) While once believed to represent a distinct subtype of RCC, it is now 

considered a specific histologic feature.(3) While sarcomatoid features are found 

in all forms of kidney cancer, >65% of cases are found with clear cell RCC 

(ccRCC).(4, 5) When sarcomatoid features are present, renal tumors generally are 

large (median size 10 cm), invasive (20%), and/or metastatic (50%) at 

presentation.(4, 5) While all such tumors are considered to be Fuhrman grade 

IV,(6) their prognosis is significantly worse when compared to other high-grade 

tumors. (7) These tumors, when metastatic, have amongst the poorest survival of 

all genitourinary malignancies, with a median survival of only six months.(1, 2, 4) 

Even with resected localized disease, nearly 75% recur and have a median 

survival of <2 years.(4, 8) The response to systemic therapy is poor, with rare 

durable responses occurring with any therapeutic strategy.(9-12)  

Understanding of the genetic events associated with sarcomatoid kidney 

tumors is currently limited.(9) Various theories have been proposed regarding the 

origins of sarcomatoid features in renal tumors. Given that they virtually always 

occur in conjunction with typical epithelial RCC elements, the terminology of a 

“mixed malignancy” appeared a half century ago.(13) Proposals have included 
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independent occurrences of tumor types in close proximity, as has been observed 

in various genitourinary malignancies (14), and the influence of tumor 

microenvironment.(15) The current prevailing theory is that sarcomatoid features 

represents a sub-clonal de-differentiation or transformation from an incident 

carcinomatous component.(16) However, the current theory is based on limited 

evidence. Evidence of common cell of origin is suggested by the shared patterns 

of X-chromosome inactivation.(17) While there is limited evidence that the 

epithelial component transforms into the sarcomatoid element, groups have 

considered sarcomatoid features to result from a final common de-differentiation 

pathway in RCC.(16) This is based on the sarcomatoid component more frequently 

metastasizing, possessing higher tumor grade, increased proliferative index, and 

frequent reduced expression of epithelial adhesion molecules such as E-

cadherin.(18-20) As some tumors demonstrate increased expression of N-

Cadherin, it has been suggested that epithelial-mesenchymal transformation 

(EMT) may be involved in the development of sarcomatoid elements,(21). 

However, what could be driving this process has thus far escaped elucidation.  

The use of next generation sequencing, including whole exome sequencing 

and whole genome sequencing, has brought dramatic advancements in the 

understanding of the basic biology of a multitude of cancer types, among them 

clear cell renal cell carcinomas.  A number of commonly mutated genes have been 

identified in ccRCCs, chief among them the von Hippel-Lindau tumor suppressor 

(VHL), which promotes angiogenesis under conditions of hypoxia(22).  Several 

genes involved in chromatin modification are also commonly implicated, including 
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polybromo 1 (PBRM1) and AT-rich interactive domain-containing protein 1A 

(ARID1A), both components of the Switch/Sucrose NonFermentable (SWI/SNF) 

chromatin remodeling complex, SET domain containing protein 2 (SETD2), and 

lysine-specific demethylase 5C (KDM5C)(22).  One study found genes involved in 

the ubiquitin-mediated proteolysis pathway (UMPP) to be the most frequently 

mutated, most notably the tumor suppressor BRCA1 associated protein-1 

(BAP1)(23).    In addition to gene mutations, chromosomal copy number changes 

are also common in ccRCCs, with the most common event being loss of 

chromosome 3p.  Notably, chromosome 3p contains the genes VHL, PBRM1, and 

BAP1.(24) 

Despite the success of next generation sequencing in furthering our 

understanding of ccRCCs, to date no comprehensive genomic studies have been 

conducted on the process of sarcomatoid transformation in this cancer type.  We 

therefore sought to study this deadly event using next generation sequencing 

techniques. 
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Statement of Purpose 

 In an effort to elucidate the molecular basis for sarcomatoid transformation 

in ccRCC, we performed whole exome sequencing of distinct regions of clear cell 

and sarcomatoid morphology from the same tumors in a cohort of patients with 

ccRCC with regions of sarcomatoid transformation, using adjacent normal kidney 

tissue as matched control.   Through comparison of normal, clear cell, and 

sarcomatoid exome sequencing results, we aim to address the following: 

 

1. Define the evolutionary relationship between clear cell and sarcomatoid 

elements in individual tumors.  Comparison of somatic mutations in clear 

cell and sarcomatoid components will reveal if they arise as separate 

independent entities or if one component evolves as a sub-clonal outgrowth 

of another component. 

2. Characterize the landscape of mutational burden in sarcomatoid tumor 

components, particularly in comparison to clear cell elements, including 

frequency and type of single nucleotide variants as well as regions of 

chromosomal deletion leading to loss of heterogeneity. 

3. Characterize specific genes implicated in the process of sarcomatoid 

transformation. 
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Materials and Methods 

Patients and Specimen Acquisition. From 1989 to 2010, all patients undergoing 

nephrectomy for presumed renal cancer at the University of California, Los 

Angeles (UCLA) had clinical information entered into an approved database. 

ccRCC tumors featuring sarcomatoid transformation were reviewed by a 

genitourinary (GU) pathologist (JWS). The clinical data, tumor characteristics, and 

survival have previously been described.(1, 4, 20) A second GU pathologist (MJM) 

reviewed representative slides in order to confirm the presence of distinct 

morphologic regions that represented 1) ccRCC and 2) a definitive region with 

sarcomatoid transformation.  

All living patients studied provided written informed consent for participation 

in this research. A waiver of consent was approved to study anonymized samples 

from deceased patients. The research protocol was approved by the UCLA and 

Yale Human Investigation Committees. All experiments were conducted according 

to the principles expressed in the Declaration of Helsinki. 

 

DNA Extraction, Exome Capture, and Exome Sequencing. Twenty-nine tumors 

had available formalin-fixed, paraffin-embedded blocks with adjacent normal 

kidney for genomic control. The blocks were reviewed by a third independent GU 

pathologist (AA), who confirmed the histology and identified distinct regions of 

normal kidney, clear cell, and sarcomatoid histology. From each of these regions, 

1 mm punches were obtained and DNA extracted using a previously described 

protocol.(25) Exome capture was performed using Nimblegen 2.1M Human 
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Exome Array followed by 74 base paired-end DNA sequencing on the Illumina 

HiSeq instrument.  Tumor regions were sequenced to greater depth of coverage 

than normal tissue in order to account for admixture of tumor and normal cells. 

High quality sequences were obtained for twenty-one matched sets of normal, 

carcinomatous and sarcomatoid elements. 

 

Sequence Analysis and Comparisons. Sequences were aligned to the hg19 

reference genome using the Burrows-Wheeler Aligner (BWA)-MEM algorithm(26).  

From this, somatic single nucleotide variant (SNV) calling was performed using 

Mutect(27) and indel calling was performed using Indelocator 

(https://www.broadinstitute.org/cancer/cga/indelocator).  Additional somatic 

mutation calls were acquired using a previously reported pipeline, based on a 

Fisher’s Exact Test of reference and non-reference read counts in tumor versus 

normal specimens (28). Variant calls with less than a total of 8 independent reads 

in any of the three sequenced samples from each patient were discarded. Variants 

previously identified as germline variants in 1000 Genomes Project,(29) National 

Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project, and the Yale 

University exome database were excluded. All somatic mutation calls were 

manually verified by visual inspection.   

Somatic mutations identified by Mutect in one component (e.g. the 

sarcomatoid but not carcinomatous elements) were called specific for that 

component when the variant was not called in the other component, had p < 0.05 

for two-tailed Fisher’s exact test of the difference in the distribution of reference 

https://www.broadinstitute.org/cancer/cga/indelocator
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and non-reference reads between the sarcomatoid and carcinomatous 

components, and MAF < 10% or non-reference read count <3 in the component 

lacking the variant. Empirically, component-specific variants had median counts of 

14 independent variant reads in the component in which they were called and 0 

variant reads in the component in which they were absent. All other somatic 

mutations were called in both components or were not excluded and were 

classified as shared.  Phylogenetic trees were constructed for each sample based 

on the component distributions of somatic mutations.   

Gene burden analyses were conducted to identify genes with a higher than 

expected number of somatic mutations predicted to affect protein function.  

Somatic mutations predicted to affect protein function were defined as nonsense, 

splice site, and small insertion/deletion (indel) variants, as well as missense 

variants in evolutionarily conserved amino acid positions and missense variants 

predicted as damaging by the PolyPhen-2 algorithm(30).  Shared, carcinomatous 

component specific, and sarcomatoid component specific mutations were 

analyzed separately.  We adjusted for gene size and expression in kidney 

epithelium to account for the effects of transcription-coupled DNA repair(31).  A 

significance threshold of p=0.05 was used for known Pan-Cancer genes and 

p=2.5x10-6 for all other genes to account for multiple testing of 25,000 genes 

across the genome.  

Chromosomal segments with loss of heterozygosity (LOH) were identified 

from departure of the minor allele frequencies of heterozygous SNPs in tumor 

samples from the frequencies seen in matched normal samples(28).  
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Chromosomal arms with elevated rates of LOH specific to sarcomatoid 

components were identified using a binomial distribution with FDR < 0.25.  Tumor 

purities were estimated using the difference in allele frequencies between tumor 

and normal components in regions of LOH. 

Results in our cohort were compared to sequencing results seen in 424 

ccRCCs in The Cancer Genome Atlas (TCGA) ccRCC study (22). Local pathology 

reports of TCGA samples were reviewed to identify samples with sarcomatoid 

features. Data from cBioPortal was used to determine the frequency of specific 

mutations, overall mutational burden, and concomitant LOH in these samples.(32)  
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Results 

Exome sequencing of carcinomatous and sarcomatoid elements of ccRCCs. 

The clinical and pathologic features of the twenty-one patients with ccRCC with 

sarcomatoid transformation are shown in Table 1.  Cancer-specific survival was 

poor, with a 1 and 2-year survival of 38 and 30%, respectively (Figure 1).  Similar 

to other cohorts, tumors were large (median 10 cm), were frequently associated 

with metastases (66.6%), and frequently showed local invasion (80.9% T3/T4; 

Table 1).  

Carcinomatous and sarcomatoid elements were separately dissected from 

each tumor. Whole exome sequencing was separately performed on matched 

DNA samples comprising normal tissue, carcinomatous, and sarcomatoid 

components of each primary tumor. A summary of sequencing metrics is shown in 

Table 2. Normal, carcinomatous, and sarcomatoid components were sequenced 

to a mean depth of 135, 177, and 171 independent reads per targeted base in the 

exome.  There was no correlation of median coverage in either carcinomatous or 

sarcomatoid regions with somatic mutation count (R2 < 0.01, p=0.99 and R2<0.01, 

p=0.94, respectively), suggesting sufficient depth of coverage for complete 

mutation calling. Median tumor purity was estimated at 62% (range 33%-82%) for 

the sarcomatoid and 46% (range 18%-75%) for the carcinomatous components 

(p=0.024 for difference in purity between components by Mann-Whitney U test). 

Variation in tumor purity between regions may be related to differences in the 

tumor microenvironment. Overall, the tumor purity in both components is similar to 

that observed in other cohorts such as TCGA (median 54%, range 18-87%).(22)  
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Table 1: Clinical Characteristics (n = 21) 

Gender 

Male 15 (71.4%) 

Female 6 (28.5%) 

Age (years) 

Mean 60.57 + 12.3 

Median 61 

Tumor size (cm) 

Mean 11.27 + 4.3 

Median 10 

Tumor stage 

T1 2 (9.5%) 

T2 2 (9.5%) 

T3 15 (71.4%) 

T4 2 (9.5%) 

N stage 

0 6 (76.2%) 

1+ 15 (23.8%) 

M stage 

0 7 (33.3%) 

1 14 (66.6%) 

% Sarcomatoid 

Mean 46.9% + 26.9% 

Median 50% 

Means are shown with standard deviations  
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Figure 1: 

 

 
Patient Disease-Specific Survival 
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Table 2: Sequence Summary Statistics 
 

Origin Normal Carcinomatous Sarcomatoid 

Number of samples 21 21 21 

# of reads (M) 132 210 204 

Median independent reads 109  150  142 

Mean independent reads 135 177 171 

% on genome 87.39% 87.29% 85.95% 

% on target 70.47% 58.81% 57.96% 

% of targeted bases > 20     

reads 
94.08% 95.56% 94.76% 

Mean error rate 0.71% 0.92% 0.94% 
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Landscape of mutation burden. Somatic single nucleotide variants (SSNVs) and 

chromosome segments showing loss of heterozygosity (LOH) were called in each 

tumor as described in the Methods. In 19 tumors, the mean total number of somatic 

single nucleotide variants (SSNVs), including both shared and component-

specific, was 108 + 33 (range 41 to 163; Figure 2a). The other two tumors were >5 

standard deviation outliers in both tumor components, with a total mutation burden 

of 597 in one tumor and 434 SSNVs in the other. These two tumors also had a 

mutational signature characteristic of mismatch repair (MMR) deficiency, with an 

abundance of C:G>T:A transitions and a paucity of A:T>C:G, A:T>T:A, and 

C:G>G:C transversions(33) (Figure 2b).  These tumors were considered to have 

hypermutation based on prior definitions (34, 35) and evidence of mismatch repair 

deficiency. Consistent with this, one hypermutated tumor had a heterozygous 

truncating mutation at R389 in MSH2 in both carcinomatous and sarcomatoid 

elements with sarcomatoid-specific LOH at this locus as well as a sarcomatoid-

specific heterozygous E1085K mutation in POLE. In contrast, there were no 

examples of hypermutation in the ccRCCs studied by TCGA (no tumor with more 

than 128 SSNVs)(22, 35) (p=0.002) (Figure 3). Neither of these samples had a 

germline alteration in MMR genes (MSH2-6, MLH1, MLH3, PMS1-2, PSMP3, 

POLE). In the TCGA cohorot, somatic alterations of MMR genes were infrequently 

observed(21/424 tumors, 5.0% overall), but there were no examples of 

hypermutation.(22) Both hypermutated tumors had homo/hemizygous VHL 

SSNVs, making misclassification unlikely, suggesting that these hypermutated 

tumors may be more likely to develop sarcomatoid features. As these  
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Figure 2: 
 

 
 

Somatic mutations in 21 renal tumors with sarcomatoid features. a. Somatic mutation counts in 21 

tumors by tumor component.  Sample IDs labeled on bottom axis. b. Somatic mutation pattern by 

single nucleotide change. c. Presence of somatic mutations and LOH for significantly mutated and 

genes of interest. d. Frequency of LOH events by chromosome region in the carcinomatous (green) 

and sarcomatoid (red) tumor components for 14 non-hypermutated tumors with complete genome-

wide LOH data.  e. Presence of LOH in chromosomal segments with significant sarcomatoid-

specific LOH. 
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hypermutated tumors may differ from the others biologically, these were separately 

analyzed. Cancer genes with somatic mutations in these tumors are shown in 

Figure 4.  

 

Figure 3: 

 

 
Number of somatic mutations (Log Scale) in each cohort (TCGA Clear Cell/KIRC(22)) and clear 

cell and sarcomatoid component of our tumor cohort.  Note hypermutated outliers (sample 1 and 

2), one of which had a shared and a sarcomatoid-specific MSH2 and POLE mutation, respectively. 

The median number of mutations was greater for both the carcinomatous and sarcomatoid 

components compared to the TCGA clear cell cohort (* and ** Mann-Whitney U test, p= 0.005 and 

<0.001, respectively) 
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Figure 4: 

 

Phylogenetic trees of 21 ccRCC tumors.  Branch and trunk lengths correspond to the number of 

somatic mutations in each tumor component, including shared, carcinomatous-specific, and 

sarcomatoid-specific mutations.  Mutations in previously described ccRCC genes, Pan-Cancer 

genes, other recurrently mutated genes (TSG101, RQCD1, LRIF1, PTK7, and FAT family), and 

MMR genes in hypermutated samples are shown.  Sample IDs labeled at top left of each 

phylogenetic tree. 
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Common origin of carcinomatous and sarcomatoid elements. Among the non-

hypermutated tumors, sarcomatoid and carcinomatous elements shared a mean 

of 45/108 (41.7%) SSNVs, providing unequivocal evidence that these elements 

arise from a common cell of origin that bears many somatic mutations. The known 

cancer genes (using the Pan-Cancer gene set(36)) that most frequently shared 

somatic mutations in both carcinomatous and sarcomatous elements were VHL 

(SSNV+LOH in both elements in 11/19 tumors), PBRM1 (SSNV+LOH in both 

elements in 4/19 tumors) and SETD2 (SSNV+LOH in both elements in 4/19 

tumors) (Figure 3c, Table 3). Moreover, these three genes are linked to one 

another on chromosome 3p; this segment shows LOH in every tumor. Somatic 

SSNVs in these three genes and LOH of 3p are hallmarks of ccRCC (22), and the 

evidence that these mutations predate the split of carcinomatous and sarcomatoid 

elements provides strong evidence that these tumors initially arise as ccRCC.  
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Table 3: Gene burden analysis of somatic mutations shared by carcinomatous and 

sarcomatoid elements of 19 non-hypermutated tumors. 

Gene 
Known 
ccRCC 
driver 

Pan-
Cancer 
gene 

Coding 
size (bp) 

# LOF or 
damaging 
missense 
mutations 

 P value 
# other non-
synonymous 

mutations 

# silent 
mutations 

VHL Yes Yes 645 11 2.96E-32 0 0 

SETD2 Yes Yes 7716 4 2.60E-6 0 0 

PBRM1 Yes Yes 4837 3 1.98E-5 1 0 

PTEN Yes Yes 1221 2 1.00E-4 0 0 

UBXN7 No No 1481 2 1.51E-04 0 0 

KLHL7 No No 1772 2 1.65E-04 0 0 

GBA No No 1622 2 1.75E-04 0 0 

PIK3CA Yes Yes 3227 2 5.39E-4 0 0 

USP53 No No 3237 2 5.42E-04 0 0 

NEDD4 No No 3766 2 9.48E-04 0 0 

TLR4 No Yes 2523 1 0.029 0 0 

TSHZ2 No Yes 3107 1 0.035 0 0 

KDM6A Yes Yes 4235 1 0.042 0 0 

 

Significance threshold was 0.05 for known Pan-Cancer genes and 2.5x10-6 for all other genes.   

P-values in bold values indicate genes surpassing significance threshold. LOF, loss of function 

mutations- nonsense, splice site, or small insertion/deletions; damaging missense mutations- 

mutations at highly conserved positions or predicted as damaging by PolyPhen-2. 

  



www.manaraa.com

19 
 

Increased burden of cancer driver mutations in sarcomatoid elements. 

Among somatic mutations that were specific to either sarcomatoid or 

carcinomatous elements, sarcomatoid components had a significantly higher 

burden of unique SSNVs (mean 45 vs. 18 SSNVs per tumor, p=6.2x10-4, Figure 

5a). Similarly, sarcomatoid components had nearly twice the length of element-

specific somatic LOH (median 913 Mb vs 460 Mb, p < 0.05, Figure 2d).  

The minor allele frequencies (MAFs) of component-specific SSNVs were 

significantly lower than those of shared SSNVs. Among carcinomatous 

components, the median MAFs were 15.3% vs. 21.4% for component-specific and 

shared SSNVs, respectively (p<2.2x10-16 by Mann-Whitney U-test). Similarly, in 

sarcomatoid elements the median MAFs were 19.4% vs. 27.0% for component-

specific and shared SSNVs, respectively (p<2.2x10-16 by Mann-Whitney U-test). 

These findings are consistent with many component-specific mutations arising 

after clonal lineage separation. 

Component-specific, non-synonymous SSNVs in known cancer genes were 

significantly more frequent in sarcomatoid than carcinomatous elements 

(respectively 27 total, mean 1.4 SSNVs per tumor, vs. 5 total, mean 0.26; p=0.002 

by Wilcoxon signed rank test, Figure 5b). Non-synonymous somatic mutations in 

known cancer genes also occurred more often than expected by chance in 

sarcomatoid elements (p = 1.7x10-6) but not carcinomatous elements (p = 0.08). 

Consistent with this, the ratio of non-synonymous/synonymous (NS/S) SSNVs was 

5.4 for cancer genes vs. 3.7 for other genes in sarcomatoid elements, while the 

NS/S ratio was not elevated amongst Pan-cancer genes compared to other genes 
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in carcinomatous elements (2.5 vs 2.9) (Figure 5c). These findings lend further 

support to the evolution of sarcomatoid elements from carcinomatous elements by 

acquisition of new somatic mutations in cancer drivers rather than simply sampling 

issues from a heterogenous tumor.  
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Figure 5: 
 

 
 
Comparison of somatic mutations in carcinomatous and sarcomatoid elements. a. Mean number 

of somatic mutations by tumor component for the 19 non-hypermutated tumors. 41.7% of all 

mutations were shared between tumor components. Sarcomatoid regions had a significantly higher 

number of component-specific mutations (mean 45 vs. 18, p = 6.2x10-4 by Wilcoxon signed-rank 

text).  b. Mean number of non-synonymous somatic mutations in known Pan-Cancer genes by 

tumor component. Sarcomatoid regions had a significantly higher number of component-specific 

mutations (1.42 vs 0.26, p = 0.002 by Wilcoxon signed-rank test). c. Ratio of non-synonymous to 

synonymous mutations in known Pan-Cancer genes by tumor component 
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Sarcomatoid-specific mutations in TP53, ARID1A and BAP1. Among 

sarcomatoid-specific SSNVs in known cancer genes, the frequency of mutation in 

TP53 was remarkable (Table 4). There were no SSNVs or segments of LOH 

involving TP53 among carcinomatous regions in these tumors.  In contrast, six 

sarcomatoid elements acquired bi-allelic TP53 mutations (six NS SSNVs that were 

all homo/hemizygous via LOH), an event highly unlikely to occur by chance 

(p=5.47x10-17, Figure 2c).  Sarcomatoid-specific mutations also occurred in other 

cancer driver genes, including two mutations in BAP1 and three in ARID1A.  With 

the exception of one ARID1A mutation, all were accompanied by LOH (p = 

3.24x10-5 and p=1.54x10-5 for presence of SSNV and LOH in ARID1A and BAP1, 

respectively).  Interestingly, all biallelic TP53, ARID1A, and BAP1 mutations were 

mutually exclusive (probability of 7.8% occurring by chance, direct calculation), 

suggesting that these SSNVs may represent alternative pathways towards 

sarcomatoid transformation (Figure 2c).  Consistent with this interpretation, mutual 

exclusivity of ARID1A and TP53 is commonly observed in ovarian and endometrial 

malignancies.(37, 38) Similarly in the clear cell TCGA cohort, mutations in TP53 

(9 tumors) and ARID1A (14 tumors) were mutually exclusive. Both genes have 

been shown to form a complex that regulates transcription of CDKN1A and 

SMAD4.(37) As either mutation alone may be sufficient alone to promote 

tumorigenesis via a common pathway, it may be unnecessary for the cell to have 

concurrent mutations in both genes. 
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Table 4: Gene burden analysis of sarcomatoid-specific mutations in 19 non-

hypermutated tumors.  

Gene 
Known 
ccRCC 
driver 

Pan-
Cancer 
gene 

Coding 
size (bp) 

# LOF or 
damaging 
missense 
mutations 

 P value 
# other non-
synonymous 

mutations 

# silent 
mutations 

TP53 Yes Yes 1192 6 2.28E-14 0 0 

FAT2 No No 13047 4 4.84E-05 0 0 

ARID1A Yes Yes 6878 3 5.04E-05 0 0 

TSG101 No No 1183 2 6.94E-05 0 0 

PTEN Yes Yes 1221 2 9.80E-05 0 0 

BAP1 Yes Yes 2207 2 2.41E-04 0 1 

HIF1A No No 2496 2 3.05E-04 0 0 

LRIF1 No No 2314 2 5.23E-04 0 0 

PBRM1 Yes Yes 4837 2 2.44E-03 0 0 

NRAS No Yes 1797 1 8.55E-03 0 0 

PTPN11 No Yes 1559 1 0.020 0 0 

TBL1XR1 No Yes 2969 1 0.023 0 0 

EPHA3 No Yes 3955 1 0.043 0 0 

ERBB4 No Yes 574 1 0.044 0 0 

 

Significance threshold was 0.05 for known Pan-Cancer genes and 2.5x10-6 for all other genes.   

P-values in bold values indicate genes surpassing significance threshold. LOF, loss of function 

mutations- nonsense, splice site, or small insertion/deletions; damaging missense mutations- 

mutations at highly conserved positions or predicted as damaging by PolyPhen-2. 
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Table 5: Gene burden analysis of the carcinomatous-specific mutations in the 19 

non-hypermutated tumors.  

Gene 
Known 
ccRCC 
driver 

Pan-
Cancer 
gene 

Coding 
size (bp) 

# LOF or 
damaging 
missense 
mutations 

 P value 
# other non-
synonymous 

mutations 

# silent 
mutations 

RLIM No No 1878 2 5.20E-05 0 0 

PRPF8 No No 7050 2 7.08E-04 0 0 

KDM5C Yes Yes 4709 1 0.025 0 0 

MTOR Yes Yes 7707 1 0.035 0 0 

PBRM1 Yes Yes 4837 1 0.041 0 0 

 

Significance threshold was 0.05 for known Pan-Cancer genes and 2.5x10-6 for all other genes.   

P-values in bold values indicate genes surpassing significance threshold. LOF, loss of function 

mutations- nonsense, splice site, or small insertion/deletions; damaging missense mutations- 

mutations at highly conserved positions or predicted as damaging by PolyPhen-2.
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Among tumors with genome-wide LOH data in both components, several 

chromosomes showed recurrent segments of sarcomatoid-specific LOH that were 

unlikely to have occurred by chance. These included segments on chromosome 

1p (57%, all including ARID1A, q=0.030); chr. 9 (86%, all including CDKN2A, 

q=0.007), chr. 10 (36%, all including PTEN, q=0.108) chr. 14 (64%, q=0.108), chr. 

17p (43%, all including TP53, q=0.030), chr. 18 (50%, q=0.188) and chr. 22 (29% 

tumors, q=0.210) (Figure 2d, 2e).  

 We also sought other genes with SSNVs that occurred more often than 

expected by chance on either lineage (Table 4, 5). FAT atypical cadherin 2 (FAT2) 

was the second most frequently mutated gene in the sarcomatoid-specific gene 

burden analysis (4 SSNVs) and the top mutated gene not previously implicated in 

ccRCC (p = 4.84x10-5). Six other genes not previously implicated in ccRCC 

harbored sarcomatoid-specific SSNVs in two tumors each, some in segments of 

LOH.  These genes include two additional FAT genes, FAT1 and FAT3, as well as 

tumor susceptibility 101 (TSG101), ligand dependent nuclear receptor interacting 

factor 1 (LRIF1), required for cell differentiation 1 homolog (RQCD1), and protein 

tyrosine kinase 7 (PTK7). Details of these and other SSNVs in driver genes are 

shown in Table 6.  Phylogenetic trees of all tumors, by tumor component and 

including mutated cancer genes, are shown in Figure 4.
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Table 6: Non-synonymous somatic mutations in select genes 

Sample 
Samples 

with 
mutation* 

Gene Chr Pos 
# ref 
sarc 

# non-ref 
sarc 

# ref 
carc 

# non-
ref carc 

AA change 
# non-

conserved 
species† 

PolyPhen-2 
score‡ 

LOH* 

CCC-FP-10§ CS TP53 17 7578406 39 5 70 10 R175H 2 0.999(D) CS 

CCC-FP-12 S TP53 17 7579355 61 32 130 0 L111P 5 1(D) S 

CCC-FP-13 S TP53 17 7577081 121 32 248 0 E286G 1 0.995(D) S 

CCC-FP-19 S TP53 17 7578413 8 7 61 0 V173M 3 1(D) S 

CCC-FP-21 S TP53 17 7578211 138 19 271 1 R213Q 1 1(D) S 

CCC-FP-26 S TP53 17 7577551 55 8 112 0 M246in_frame_del NA NA S 

CCC-FP-28 S TP53 17 7578538 94 99 185 0 N131I 5 1(D) S 

CCC-FP-1 CS VHL 3 10188253 118 42 128 46 Q132 NA NA CS 

CCC-FP-10§ CS VHL 3 10191512 123 15 96 47 L169 NA NA CS 

CCC-FP-12 CS VHL 3 10183725 13 8 18 3 S65X NA NA CS 

CCC-FP-15 CS VHL 3 10188251 139 180 191 62 Q132fs NA NA CS 

CCC-FP-16 CS VHL 3 10183703 23 9 14 1 R58fs NA NA CS 

CCC-FP-2 CS VHL 3 10191476 29 62 98 35 T157fs NA NA CS 

CCC-FP-20 CS VHL 3 10183800 9 6 20 5 N90in_frame_del NA NA CS 

CCC-FP-26 CS VHL 3 10188245 99 90 194 14 V130L 0 0.979(D) CS 
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CCC-FP-28 CS VHL 3 10183762 9 8 15 10 C77X NA NA CS 

CCC-FP-4§ CS VHL 3 10183861 6 6 1 5 H110fs NA NA CS 

CCC-FP-5 CS VHL 3 10188295 152 87 167 81 P146fs NA NA CS 

CCC-FP-7 CS VHL 3 10183797 5 3 11 7 L89H 4 1(D) CS 

CCC-FP-8 CS VHL 3 10188210 331 39 214 80 L118R 1 1(D) CS 

CCC-FP-10§ S ARID1A 1 27101611 20 9 34 3 Q1414fs NA NA CS 

CCC-FP-15 S ARID1A 1 27099030 80 88 228 0 S1149X NA NA S 

CCC-FP-20 S ARID1A 1 27105553 99 10 170 3 R1505X NA NA - 

CCC-FP-6 S ARID1A 1 27099947 39 88 128 12 R1276X NA NA S 

CCC-FP-14 S BAP1 3 52436820 80 13 133 1 E653fs NA NA CS 

CCC-FP-7 S BAP1 3 52443860 63 14 42 0 P12L 1 0.997(D) CS 

CCC-FP-1 CS PBRM1 3 52682418 194 122 171 79 I252T 2 0.901(P) CS 

CCC-FP-12 CS PBRM1 3 52613113 76 56 125 14 V1139fs NA NA CS 

CCC-FP-15 CS PBRM1 3 52643672 49 45 48 13 E742X, P741P NA NA CS 

CCC-FP-19 C PBRM1 3 52582176 146 0 230 29 A1551fs NA NA CS 

CCC-FP-20 S PBRM1 3 52668672 276 54 230 2 K416fs NA NA CS 

CCC-FP-21 CS PBRM1 3 52713619 55 32 121 31 R37fs NA NA CS 

CCC-FP-29 S PBRM1 3 52643477 214 27 239 0 I807fs NA NA CS 
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CCC-FP-21 S PTEN 10 89711913 145 62 417 0 Y177X NA NA CS 

CCC-FP-26 S PTEN 10 89624292 161 117 384 1 D22fs NA NA CS 

CCC-FP-7 CS PTEN 10 89720677 120 43 180 68 N276K 0 1(D) CS 

CCC-FP-7 CS PTEN 10 89717724 239 33 338 48 C250in_frame_ins NA NA CS 

CCC-FP-16 CS SETD2 3 47164856 51 23 60 16 R424X NA NA CS 

CCC-FP-21 CS SETD2 3 47147612 27 17 48 16 2 bp upstream of 
exon 6 

NA NA CS 

CCC-FP-3 CS SETD2 3 47129632 299 36 311 63 Q1750X NA NA CS 

CCC-FP-7 CS SETD2 3 47162421 21 11 39 29 L1235fs NA NA CS 

CCC-FP-15 CS FAT1 4 187628245 17 11 30 8 V913M 35 0.143(B) - 

CCC-FP-26 CS FAT1 4 187539105 193 99 364 45 K2879E 13 0.005(B) S 

CCC-FP-16 CS FAT2 5 150945470 12 2 15 11 L1008fs NA NA - 

CCC-FP-19 S FAT2 5 150914030 18 9 51 0 V3122in_frame_del NA NA - 

CCC-FP-20 S FAT2 5 150947852 22 5 24 1 R214Q 10 0.958(D) - 

CCC-FP-26 S FAT2 5 150911450 30 6 24 0 R3170H 6 0.996(D) - 

CCC-FP-3 S FAT2 5 150923703 168 32 158 0 G2329R 0 1(D) - 

CCC-FP-4§ S FAT3 11 92085964 73 9 100 0 L229P 2 1(D) S 

CCC-FP-13 S FAT3 11 92620268 218 11 203 0 G4347A 7 0.792(D) - 

CCC-FP-12 S PTK7 6 43098336 99 40 154 1 A250D 1 1(D) - 
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CCC-FP-17 CS PTK7 6 43111336 133 18 25 4 E613D 0 0.999(D) S 

CCC-FP-19 S RQCD1 2 219457100 36 14 80 0 R205H 0 1(D) - 

CCC-FP-20 CS RQCD1 2 219457091 311 5 158 1 T202M 0 1(D) S 

CCC-FP-19 S LRIF1 1 111494368 20 12 66 1 D380fs NA NA - 

CCC-FP-29 S LRIF1 1 111492586 272 52 285 0 R586G 1 0.992(D) - 

CCC-FP-3 S TSG101 11 18503287 385 10 343 0 L324F, Y325N 0 0.999(D) - 

CCC-FP-29 S TSG101 11 18531165 211 52 299 0 F135fs NA NA - 

 

*S = mutation/LOH is exclusive to sarcomatoid region; C = exclusive to carcinomatous region; CS = shared by sarcomatoid and carcinomatous 

regions. 

†Number of vertebrate species with substitutions at this position.   

‡PolyPhen-2 score (classification: D- probably damaging; P- possibly damaging; B- benign).  

§Hypermutated tumor 
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Discussion 
 

The presence of sarcomatoid features has long been recognized as an 

extremely poor prognostic factor in kidney cancer. However, until now, a genetic 

basis of sarcomatoid transformation has remained largely unknown. Our finding 

that 43% of somatic mutations are shared between carcinomatous and 

sarcomatous elements provides conclusive evidence that these elements arise 

from a common clonal ancestor. Despite the suggestion of a shared clonal origin, 

there has previously been little evidence that the sarcomatoid component arose in 

a process of de-differentiation from a pre-existing carcinomatous component.(16) 

The data herein provides very strong evidence of a carcinomatous origin. The most 

frequently mutated cancer drivers that are shared by carcinomatous and 

sarcomatous elements are the genes that are characteristically mutated in ccRCC. 

Second, the burden of new SSNVs in known cancer drivers is more than 5-fold 

higher on the sarcomatoid than carcinomatous regions. Third, there is a highly 

significant burden of sarcomatoid-specific mutation of TP53, implicating a specific 

gene in development of sarcomatoid elements, along with recurrent mutations 

and/or segments of LOH affecting other known cancer genes. These findings 

support a pathogenic sequence in which somatic mutations occurring in a ccRCC 

drives de-differention to a sarcomatoid state. Importantly, the finding of highly 

significant sarcomatoid-specific mutation signals is inconsistent with the observed 

differences being the result of simple heterogeneity within tumors, in which case 

differences between carcinomatous and sarcomatoid elements would be expected 

to be stochastic.  
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The high frequency of homozygous TP53 mutations in sarcomatoid 

elements was striking. These were found in 6 of 19 (31.5%) non-hypermutated 

tumors. TP53 mutations are otherwise rare in ccRCC ((22, 39). For example 

among 395 ccRCCs reported by TCGA that do not have sarcomatoid elements, 

only 6 of 395 (1.5%) have TP53 mutation (P = 3 x 10-6, Fisher exact test, odds ratio 

29), and only two of these are in segments of LOH (Figure 6). These findings are 

consistent with prior work from Oda and colleagues who performed a candidate 

gene study of 14 tumors with sarcomatoid transformation and noted a higher 

incidence of TP53 mutations in the sarcomatoid region using 

immunohistochemistry and Sanger sequencing.(40). TP53 alterations may link the 

EMT pathway to sarcomatoid transformation, as p53 loss can reduce expression 

of miR-200c, which contributes to EMT.(41) Additionally, one hypermutated tumor 

contained an R175H alteration in TP53, a known gain-of-function mutation that 

results in upregulation of TWIST1, an important EMT transcriptional regulator (42). 

In another form of renal cancer, Wilms tumors, loss of TP53 similarly leads to 

histologic changes (anaplasia) and a poor prognosis.(43, 44)  

We identified somatic mutations in genes that are characteristic for ccRCC, 

including VHL, PBRM1, SETD2, PTEN, ARID1A, and BAP1. Notably, all ARID1A 

and BAP1 SSNVs were exclusive to sarcomatoid regions, all but one were in 

segments of LOH, and were mutually exclusive with each other and with TP53 

mutations. Deficiency of ARID1A and BAP1 has been associated with worse 

prognosis, higher tumor grade, and a higher incidence of sarcomatoid 

histology.(45, 46) However, many other tumors show only LOH at these loci, 
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suggesting these events may be permissive of but insufficient for sarcomatoid 

transformation. 

The incidence of VHL SSNV’s was 57.9% (11/19 tumors). Additionally, all 

tumors had LOH of chromosome 3p. Consistent with its role as an early event in 

tumorigenesis(47, 48), all VHL mutations were shared in carcinomatous and 

sarcomatoid elements. VHL alterations (mutation and hypermethylation) have 

been considered the hallmark of ccRCC.(49, 50) For centrally reviewed ccRCC, 

the incidence of VHL mutation is as high as 81.3%(51), which suggests that our 

cohort had a lower incidence of VHL mutation.(39, 51)  Similarly, it has been shown 

that wild-type VHL ccRCC has a more aggressive phenotype, (52, 53) perhaps 

related to an increased propensity for sarcomatoid transformation. 

Mutations in genes not implicated in ccRCC may be relevant to sarcomatoid 

transformation. Sarcomatoid-specific mutations in FAT2 were found in 5 tumors 

(including one in a hypermutated tumor). Mutations in other members of the FAT 

family, including FAT1 and FAT3, were in 2 tumors each.  In total, 7 of 19 non-

hypermutated tumors (36.8%) in our cohort contained mutations FAT family genes.  

In contrast, FAT family mutations were rarely found in ccRCC in TCGA (5.8%, 

Figure 6). FAT proteins play multiple roles in cell adhesion, motility, polarity, 

signaling, and proliferation, and mutations are implicated in a variety of 

cancers(54-56). Loss of FAT1 has been shown to promote WNT signaling, a 

critical mediator of EMT(57).  Further exploration of these genes in sarcomatoid 

elements will be required to assess the significance of the role of FAT family genes.  
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Mutations in several other genes were of interest, but will also require larger 

numbers of samples to assess significance.  All mutations in these genes are listed 

in Table 6. Two tumors had sarcomatoid-specific mutations in TSG101, a member 

of the ESCRT-I complex involved in ubiquitinated protein trafficking(58) and a 

known breast cancer tumor suppressor (58, 59).  These include a frameshift 

mutation and a dinucleotide mutation in a highly conserved position in the 

“steadiness box” domain, responsible for cellular auto-regulation of TSG101.(58)  

Both overexpression and deficiency of TSG101 have been linked to tumorigenesis 

and cell cycle abnormalities.(58)  Two mutations, one sarcomatoid-specific and 

one shared with sarcomatoid-specific LOH, both in highly conserved amino acid 

positions, were present in PTK7, a tyrosine kinase regulator of cell motility, 

adhesion, polarity, and WNT signaling(60).  Both over and under-expression of 

PTK7 is implicated in a variety of cancers(61).  In human pluripotent stem cells it 

appears to be a marker of EMT(62). Lastly, two mutations each were present in 

RQCD1 and LRIF1, both retinoic-acid receptor transcriptional cofactors(63, 64).  

RQCD1 is a component of the DRF complex containing RAR and ATF-2,(63) as 

well as a component of the CCR4-NOT complex involved in miRNA-mediated gene 

silencing(65).  While RQCD1 mutations were extremely rare in TCGA (2/424), they 

were exclusively found in sarcomatoid tumors (p= 0.0020). RQCD1 has previously 

been implicated in breast cancer and melanoma(65, 66). LRIF1 is a nuclear matrix-

associated protein that may repress ligand-dependent transcriptional activation by 

RARα (64). Several of these genes were enriched in specimens listed as having 

sarcomatoid transformation in the TCGA dataset (Figure 6). 
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Effective systemic therapy for individuals with sarcomatoid renal tumors is 

an unmet need in oncology. TP53 and ARID1A are among potential sarcomatoid-

specific targets for which therapeutics are in development (67, 68). As drugs that 

mitigate effects of mutation in these genes enter clinical trials, their study in 

sarcomatoid renal tumors may be warranted. Similarly, hypermutability in 

sarcomatoid tumors also has implications for treatment of both tumor components. 

Loss of key mismatch repair genes can sensitize tumors to radiation and some 

types of chemotherapy.(69) These tumors have also shown sensitivity to 

immunotherapy for several cancer types, perhaps due to the increased burden of 

novel epitopes. (70, 71). Lastly, PD-1 and PDL-1 expression has also recently 

been found to be greater in tumors with sarcomatoid features,(72) raising the 

possibility that these tumors may be responsive to immune checkpoint inhibitor 

immunotherapy.  

This study is the first comprehensive genomic assessment of the process 

of sarcomatoid transformation in ccRCC using next generation sequencing 

techniques.  Other strengths of our study include the limitation of our cohort to a 

single subtype of RCC (clear cell carcinoma) rather than an admixture of differing 

subtypes with different underlying biology and the collaboration of three 

independent pathologists for confirmation of sarcomatoid transformation.  The 

latter point is particularly vital as there is no objective marker of sarcomatoid 

transformation.  Our study was limited by the use of only a single site within each 

tumor component per patient, which limited our ability to perform a more 

comprehensive phylogenetic assessment.  Our comparisons to the TCGA cohort 
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may be confounded by differences in bioinformatics pipelines and somatic 

mutation filtering criteria.  Additionally, TCGA samples did not undergo central 

pathology review for sarcomatoid histology.  The presence or absence of 

sarcomatoid histology in these tumors should therefore be in question: tumors 

marked as having sarcomatoid features may not have truly contained sarcomatoid 

histology or may have contained mixed components. 
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Figure 6:  

 
 
Comparison of frequency of somatic mutation of most frequently mutated in sarcomatoid regions 

(red outline) (n=19) and that observed in non-sarcomatoid clear cell tumors in the TCGA (blue 

outline) (n=395).  Heterozygous alterations are shaded gray while hemizygous alterations are in 

white. Fisher’s Exact test was used for comparisons.  * denotes a p value of <0.05.  TP53, 

ARID1A, RQCD1, LRIF1, TSG101, PTK7, and FAT1/2/3 were all significantly increased in the 

sarcomatoid components. 
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